Pure Mathematics 3

Chapter review

1 a $\mathrm{f}(x)=x^{3}-6 x-2$
$\mathrm{f}(x)=0 \Rightarrow x^{3}=6 x+2$
$x^{2}=6+\frac{2}{x}$
$x= \pm \sqrt{6+\frac{2}{x}}$
$a=6, b=2$
b $\quad x_{n+1}=\sqrt{6+\frac{2}{x_{n}}}$
$x_{0}=2 \Rightarrow x_{1}=\sqrt{6+\frac{2}{2}}=\sqrt{7}=2.64575 \ldots$
$x_{2}=\sqrt{6+\frac{2}{2.64575 \ldots}}=2.59921 \ldots$
$x_{3}=\sqrt{6+\frac{2}{2.59921 \ldots}}=2.60181 \ldots$
$x_{4}=\sqrt{6+\frac{2}{2.60181 \ldots}}=2.60167 \ldots$
To 4 d.p., the values are $x_{1}=2.6458$, $x_{2}=2.5992, x_{3}=2.6018, x_{4}=2.6017$.
c $\mathrm{f}(2.6015)=2.6015^{3}-6 \times 2.6015-2$

$$
=-0.0025 \ldots
$$

$\mathrm{f}(2.6025)=2.6025^{3}-6 \times 2.6025-2$

$$
=0.0117 \ldots
$$

There is a change of sign in this interval so $\alpha=2.602$ correct to 3 d.p.

2 a

b There is one positive and one negative root of the equation $\mathrm{p}(x)=\mathrm{q}(x)$ at the points of intersection.
$\mathrm{p}(x)=\mathrm{q}(x) \Rightarrow 4-x^{2}=\mathrm{e}^{x}$
i.e. $x^{2}+\mathrm{e}^{x}-4=0$
c $x^{2}=4-\mathrm{e}^{x}$
$x= \pm\left(4-\mathrm{e}^{x}\right)^{\frac{1}{2}}$
d $x_{n+1}=-\left(4-\mathrm{e}^{x_{n}}\right)^{\frac{1}{2}}$
$x_{0}=-2 \Rightarrow x_{1}=-\left(4-\mathrm{e}^{-2}\right)^{\frac{1}{2}}=-1.96587 \ldots$
$x_{2}=-\left(4-\mathrm{e}^{-1.96587 \ldots}\right)^{\frac{1}{2}}=-1.96467 \ldots$
$x_{3}=-\left(4-\mathrm{e}^{-1.96467 \ldots}\right)^{\frac{1}{2}}=-1.96463 \ldots$
$x_{4}=-\left(4-\mathrm{e}^{-1.96463 \ldots}\right)^{\frac{1}{2}}=-1.96463 \ldots$
To 4 d.p., the values are $x_{1}=-1.9659$, $x_{2}=-1.9647, x_{3}=-1.9646, x_{4}=-1.9646$.
e $x_{0}=1.4 \Rightarrow 4-\mathrm{e}^{1.4}<0$
There can be no square root of a negative number.

3 a $g(x)=x^{5}-5 x-6$
$\mathrm{g}(1)=1-5-6=-10$
$g(2)=32-10-6=16$
There is a change of sign in the interval, so there must be a root in the interval, since f is continuous over the interval.
b $\mathrm{g}(x)=0 \Rightarrow x^{5}=5 x+6$
$x=(5 x+6)^{\frac{1}{3}}$
$p=5, q=6, r=5$
c $\quad x_{n+1}=\left(5 x_{n}+6\right)^{\frac{1}{5}}$
$x_{0}=1 \Rightarrow x_{1}=(5+6)^{\frac{1}{5}}=1.61539 \ldots$
$x_{2}=(5 \times 1.61539 \ldots+6)^{\frac{1}{5}}=1.69707 \ldots$
$x_{3}=(5 \times 1.69707 \ldots+6)^{\frac{1}{5}}=1.70681 \ldots$
To 4 d.p., the values are $x_{1}=1.6154$, $x_{2}=1.6971, x_{3}=1.7068$.
d $\mathrm{g}(1.7075)=1.7075^{5}-5 \times 1.7075-6$ $=-0.0229 \ldots$
$\mathrm{g}(1.7085)=1.7085^{5}-5 \times 1.7085-6$

$$
=0.0146 \ldots
$$

The sign change implies there is a root in this interval so $\alpha=1.708$ correct to 3 d.p.

Pure Mathematics 3

4 a $g(x)=x^{2}-3 x-5$
$\mathrm{g}(x)=0 \Rightarrow x^{2}-3 x-5=0$
$x^{2}=3 x+5$
$x=\sqrt{3 x+5}$
b, c

d

$\mathrm{g}(x)=0 \Rightarrow x^{2}-3 x-5=0$
$3 x=x^{2}-5$
$x=\frac{x^{2}-5}{3}$
5 a $\mathrm{f}(x)=5 x-4 \sin x-2$

$$
\begin{aligned}
\mathrm{f}(1.1) & =5(1.1)-4 \sin (1.1)-2 \\
& =-0.0648 \ldots \\
\mathrm{f}(1.15) & =5(1.15)-4 \sin (1.15)-2 \\
& =-0.0989 \ldots
\end{aligned}
$$

$\mathrm{f}(1.1)<0$ and $\mathrm{f}(1.15)>0$ so there is a change of sign, which implies there is a root between $x=1.1$ and $x=1.15$.
b $5 x-4 \sin x-2=0$
$5 x-2=4 \sin x \quad$ Add $4 \sin x$ to each side.
$5 x=4 \sin x+2 \quad$ Add 2 to each side.
$\frac{5 x}{5}=\frac{4 \sin x}{5}+\frac{2}{5}$ Divide each term by 5 .
$x=\frac{4}{5} \sin x+\frac{2}{5} \quad$ Simplify.
So $p=\frac{4}{5}$ and $q=\frac{2}{5}$.

5 c $x_{0}=1.1 \Rightarrow$
$x_{1}=0.8 \sin (1.1)+0.4=1.1129 \ldots$
$x_{2}=0.8 \sin (1.1129 \ldots)+0.4=1.1176 \ldots$
$x_{3}=0.8 \sin (1.1176 \ldots)+0.4=1.1192 \ldots$
$x_{4}=0.8 \sin (1.1192 \ldots)+0.4=1.1198 \ldots$
To 3 d.p., the values are $x_{1}=1.113$, $x_{2}=1.118, x_{3}=1.119, x_{4}=1.120$.

6 a

b The line meets the curve at two points, so there are two values of x that satisfy the equation $\frac{1}{x}=x+3$.
So $\frac{1}{x}=x+3$ has two roots.
c $\frac{1}{x}=x+3 \Rightarrow 0=x+3-\frac{1}{x}$
Let $\mathrm{f}(x)=x+3-\frac{1}{x}$
$\mathrm{f}(0.30)=(0.30)+3-\frac{1}{0.30}=-0.0333 \ldots$
$\mathrm{f}(0.31)=(0.31)+3-\frac{1}{0.31}=0.0841 \ldots$
$\mathrm{f}(0.30)<0$ and $\mathrm{f}(0.31)>0$ so there is a change of sign, which implies there is a root between $x=0.30$ and $x=0.31$.
d $\frac{1}{x}=x+3$
$\frac{1}{x} \times x=x \times x+3 \times x \quad$ Multiply by x.
$1=x^{2}+3 x$
So $x^{2}+3 x-1=0$

Pure Mathematics 3

6 e Using $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ with

$$
\begin{aligned}
a & =1, b=3, c=-1 \\
x & =\frac{-(3) \pm \sqrt{(3)^{2}-4(1)(-1)}}{2(1)} \\
& =\frac{-3 \pm \sqrt{9+4}}{2}=\frac{-3 \pm \sqrt{13}}{2}
\end{aligned}
$$

So $x=\frac{-3+\sqrt{13}}{2}=0.3027 \ldots$
The positive root is 0.303 to 3 d.p.

Challenge

$$
\text { a } \begin{aligned}
& \mathrm{f}(x)=x^{6}+x^{3}-7 x^{2}-x+3 \\
& \\
& \mathrm{f}^{\prime}(x)=6 x^{5}+3 x^{2}-14 x-1 \\
& \\
& \mathrm{f}^{\prime \prime}(x)=30 x^{4}+6 x-14
\end{aligned}
$$

i $\mathrm{f}^{\prime \prime}(x)=0 \Rightarrow 6 x=14-30 x^{4}$

$$
3 x=7-15 x^{4}
$$

$$
x=\frac{7-15 x^{4}}{3}
$$

ii $\mathrm{f}^{\prime \prime}(x)=0 \Rightarrow 6 x=14-30 x^{4}$

$$
15 x^{4}+3 x=7
$$

$$
x\left(15 x^{3}+3\right)=7
$$

$$
x=\frac{7}{15 x^{3}+3}
$$

iii $\mathrm{f}^{\prime \prime}(x)=0 \Rightarrow 6 x=14-30 x^{4}$ $15 x^{4}=7-3 x$ $x^{4}=\frac{7-3 x}{15}$
$x=\sqrt[4]{\frac{7-3 x}{15}}$
b As B is a point of inflection $\mathrm{f}^{\prime \prime}(x)=0$.
Using $x_{0}=1$ in part iii
$x_{1}=\sqrt[4]{\frac{4}{15}}=0.7186 \ldots$
$x_{2}=\sqrt[4]{\frac{7-3 \times 0.7186 \ldots}{15}}=0.7538 \ldots$
$x_{3}=\sqrt[4]{\frac{7-3 \times 0.7538 \ldots}{15}}=0.7496 \ldots$
$x_{4}=\sqrt[4]{\frac{7-3 \times 0.7496 \ldots}{15}}=0.7501 \ldots$
$x_{5}=\sqrt[4]{\frac{7-3 \times 0.7501 \ldots}{15}}=0.7501 \ldots$
Correct to 3 d.p., an approximation for the x-coordinate of B is 0.750 .
c A has a negative x-coordinate. Formula iii gives the positive fourth root, so cannot be used to find a negative root.

