Pure Mathematics 3

Chapter review

1 a
$$f(x) = x^3 - 6x - 2$$

 $f(x) = 0 \Rightarrow x^3 = 6x + 2$
 $x^2 = 6 + \frac{2}{x}$
 $x = \pm \sqrt{6 + \frac{2}{x}}$
 $a = 6, b = 2$

b
$$x_{n+1} = \sqrt{6 + \frac{2}{x_n}}$$

 $x_0 = 2 \Rightarrow x_1 = \sqrt{6 + \frac{2}{2}} = \sqrt{7} = 2.64575...$
 $x_2 = \sqrt{6 + \frac{2}{2.64575...}} = 2.59921...$
 $x_3 = \sqrt{6 + \frac{2}{2.59921...}} = 2.60181...$
 $x_4 = \sqrt{6 + \frac{2}{2.60181...}} = 2.60167...$

To 4 d.p., the values are $x_1 = 2.6458$, $x_2 = 2.5992$, $x_3 = 2.6018$, $x_4 = 2.6017$.

c $f(2.6015) = 2.6015^3 - 6 \times 2.6015 - 2$ = -0.0025... $f(2.6025) = 2.6025^3 - 6 \times 2.6025 - 2$ = 0.0117...

There is a change of sign in this interval so $\alpha = 2.602$ correct to 3 d.p.

2 a

b There is one positive and one negative root of the equation p(x) = q(x) at the points of intersection.

 $p(x) = q(x) \Longrightarrow 4 - x^2 = e^x$ i.e. $x^2 + e^x - 4 = 0$

 $\mathbf{c} \quad x^2 = 4 - \mathbf{e}^x \\ x = \pm \left(4 - \mathbf{e}^x\right)^{\frac{1}{2}}$

Solution Bank

d $x_{n+1} = -(4 - e^{x_n})^{\frac{1}{2}}$ $x_0 = -2 \Longrightarrow x_1 = -(4 - e^{-2})^{\frac{1}{2}} = -1.96587...$ $x_2 = -(4 - e^{-1.96587...})^{\frac{1}{2}} = -1.96467...$ $x_3 = -(4 - e^{-1.96467...})^{\frac{1}{2}} = -1.96463...$ $x_4 = -(4 - e^{-1.96463...})^{\frac{1}{2}} = -1.96463...$

To 4 d.p., the values are $x_1 = -1.9659$, $x_2 = -1.9647$, $x_3 = -1.9646$, $x_4 = -1.9646$.

- e $x_0 = 1.4 \Rightarrow 4 e^{1.4} < 0$ There can be no square root of a negative number.
- 3 a $g(x) = x^5 5x 6$ g(1) = 1 - 5 - 6 = -10g(2) = 32 - 10 - 6 = 16

There is a change of sign in the interval, so there must be a root in the interval, since f is continuous over the interval.

- **b** $g(x) = 0 \Rightarrow x^5 = 5x + 6$ $x = (5x + 6)^{\frac{1}{5}}$ p = 5, q = 6, r = 5
- c $x_{n+1} = (5x_n + 6)^{\frac{1}{5}}$ $x_0 = 1 \Longrightarrow x_1 = (5+6)^{\frac{1}{5}} = 1.61539...$ $x_2 = (5 \times 1.61539...+6)^{\frac{1}{5}} = 1.69707...$ $x_3 = (5 \times 1.69707...+6)^{\frac{1}{5}} = 1.70681...$

To 4 d.p., the values are $x_1 = 1.6154$, $x_2 = 1.6971$, $x_3 = 1.7068$.

d $g(1.7075) = 1.7075^{5} - 5 \times 1.7075 - 6$ = -0.0229... $g(1.7085) = 1.7085^{5} - 5 \times 1.7085 - 6$ = 0.0146...

The sign change implies there is a root in this interval so $\alpha = 1.708$ correct to 3 d.p.

INTERNATIONAL A LEVEL

Pure Mathematics 3

4 a $g(x) = x^2 - 3x - 5$ $g(x) = 0 \Rightarrow x^2 - 3x - 5 = 0$ $x^2 = 3x + 5$ $x = \sqrt{3x + 5}$

$$g(x) = 0 \Longrightarrow x^2 - 3x - 5 = 0$$

$$3x = x^2 - 5$$

$$x = \frac{x^2 - 5}{3}$$

5 a $f(x) = 5x - 4\sin x - 2$ $f(1.1) = 5(1.1) - 4\sin(1.1) - 2$ = -0.0648... $f(1.15) = 5(1.15) - 4\sin(1.15) - 2$ = -0.0989...

f(1.1) < 0 and f(1.15) > 0 so there is a change of sign, which implies there is a root between x = 1.1 and x = 1.15.

b $5x - 4\sin x - 2 = 0$ $5x - 2 = 4\sin x$ Add $4\sin x$ to each side. $5x = 4\sin x + 2$ Add 2 to each side. $\frac{5x}{5} = \frac{4\sin x}{5} + \frac{2}{5}$ Divide each term by 5. $x = \frac{4}{5}\sin x + \frac{2}{5}$ Simplify. So $p = \frac{4}{5}$ and $q = \frac{2}{5}$.

Solution Bank

5 c $x_0 = 1.1 \Rightarrow$ $x_1 = 0.8 \sin(1.1) + 0.4 = 1.1129...$ $x_2 = 0.8 \sin(1.1129...) + 0.4 = 1.1176...$ $x_3 = 0.8 \sin(1.1176...) + 0.4 = 1.1192...$ $x_4 = 0.8 \sin(1.1192...) + 0.4 = 1.1198...$

To 3 d.p., the values are $x_1 = 1.113$, $x_2 = 1.118$, $x_3 = 1.119$, $x_4 = 1.120$.

6 a

b The line meets the curve at two points, so there are two values of *x* that satisfy the equation $\frac{1}{x} = x + 3$. So $\frac{1}{x} = x + 3$ has two roots. **c** $\frac{1}{x} = x + 3 \Rightarrow 0 = x + 3 - \frac{1}{x}$ Let $f(x) = x + 3 - \frac{1}{x}$ $f(0.30) = (0.30) + 3 - \frac{1}{0.30} = -0.0333...$ $f(0.31) = (0.31) + 3 - \frac{1}{0.31} = 0.0841...$

f(0.30) < 0 and f(0.31) > 0 so there is a change of sign, which implies there is a root between x = 0.30 and x = 0.31.

d $\frac{1}{x} = x+3$ $\frac{1}{x} \times x = x \times x + 3 \times x$ Multiply by x. $1 = x^2 + 3x$ So $x^2 + 3x - 1 = 0$

Pure Mathematics 3

6 e Using
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 with
 $a = 1, b = 3, c = -1$
 $x = \frac{-(3) \pm \sqrt{(3)^2 - 4(1)(-1)}}{2(1)}$
 $= \frac{-3 \pm \sqrt{9 + 4}}{2} = \frac{-3 \pm \sqrt{13}}{2}$
So $x = \frac{-3 + \sqrt{13}}{2} = 0.3027...$

The positive root is 0.303 to 3 d.p.

Challenge

a
$$f(x) = x^6 + x^3 - 7x^2 - x + 3$$

 $f'(x) = 6x^5 + 3x^2 - 14x - 1$
 $f''(x) = 30x^4 + 6x - 14$

i
$$f''(x) = 0 \Longrightarrow 6x = 14 - 30x^4$$

 $3x = 7 - 15x^4$
 $x = \frac{7 - 15x^4}{3}$

ii
$$f''(x) = 0 \Longrightarrow 6x = 14 - 30x^4$$

 $15x^4 + 3x = 7$
 $x(15x^3 + 3) = 7$
 $x = \frac{7}{15x^3 + 3}$

iii
$$f''(x) = 0 \Longrightarrow 6x = 14 - 30x^4$$

 $15x^4 = 7 - 3x$
 $x^4 = \frac{7 - 3x}{15}$
 $x = \sqrt[4]{\frac{7 - 3x}{15}}$

Solution Bank

b As *B* is a point of inflection f''(x) = 0. Using $x_0 = 1$ in part **iii**

$$x_{1} = \sqrt[4]{\frac{4}{15}} = 0.7186...$$

$$x_{2} = \sqrt[4]{\frac{7 - 3 \times 0.7186...}{15}} = 0.7538...$$

$$x_{3} = \sqrt[4]{\frac{7 - 3 \times 0.7538...}{15}} = 0.7496...$$

$$x_{4} = \sqrt[4]{\frac{7 - 3 \times 0.7496...}{15}} = 0.7501...$$

$$x_{5} = \sqrt[4]{\frac{7 - 3 \times 0.7501...}{15}} = 0.7501...$$

Correct to 3 d.p., an approximation for the x-coordinate of B is 0.750.

c *A* has a negative *x*-coordinate. Formula **iii** gives the positive fourth root, so cannot be used to find a negative root.